
All The Hydro You 
Never Wanted to Know  

Why?  

I'm starting this as a "note-to-self" as I return to reading (after a 22-year 
hiatus) Landau's seminal "A Hydrodynamic Theory of Multiple Formation 
of Particles" (1953, available as #88 in his Collected Works). This article 
seems more relevant than ever in light of  
 
1) failure of the beautiful but apparently unphysical concept of "boost 
invariance" used by Bjorken (and essentially all subsequent workers) in 
his famous 1983 paper  
and 
2) the observation by BRAHMS of Gaussian dn/dy distributions for 
identified pions,  
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with a width consistent with Landau's 50 year old prediction(!).  
 
So I've decided to work through pieces of it in some detail, not because I 
think it's the ultimate (i.e. correct) theory of RHIC collisions, but because 
it shows how much can be done at the "statistical" level, i.e., using only 
energy-momentum conservation and simple thermodynamics. (An 
unintended result that "appeared" is a reminder of how much harder it is to 
get any analytic results to the hydro equations of motion without the 
Bjorken assumption of boost invariance.) For a review of the general state-
of-the-art in hydro modeling, Hirano's QM04 talk is a great place to start.  
 
I've tried to organize the sections of these notes to have the same titles as 
Landau's sections. I am writing in Mathematica because it's convenient, 
and the document is best viewed by grabbing the Mathematica "notebook" 
file. In order to preserve both external and internal links when converting 
to PDF, I have to go through some pretty strange convolutions (see 
Production Notes), and in the first step of converting to HTML Mathematica 
tends to take a nice pretty notebook and make a mess, especially for 
equation conversion, and especially for "in line" equations.  

Introduction  

http://www-rnc.lbl.gov/qm2004/talks/plenary/04Thursday/THirano.pdf
http://www.nevis.columbia.edu/~zajc/Notebook/Hydro.nb
http://www.nevis.columbia.edu/~zajc/Notebook/Hydro.nb


After paying due tribute ("ingenious", "very fruitful") to original Fermi 
statistical model, Landau immediately batters Fermi for assuming all 
particles are created instantly, i.e., before the strongly interacting matter 
begins to expand hydrodynamically. He states the condition to apply 
thermodynamics (a la Fermi) is the same condition required to apply hydro, 
i.e. , where λ is the mean-free-path and L is the system size (actually, 
Landau correctly states that L should be the "least dimension of the 
system", an important distinction when dealing with the asymmetries from 
Lorentz contraction). 
Landau also takes explicit note that he will be assuming zero viscosity and 
thermal conductivity, and again justifies this by simple dimensional 
arguments involving the Reynolds number R:  

 

 

 
and since the "conventional" definition of Reynolds number in terms of 
viscosity η is  

 

 

 
this limit is equivalent to assuming . For much more on viscosity see 
my notes on Viscosity done simply. 

Thermodynamics Relations...  

After the preliminaries, Landau works out the Bose and Fermi statistics for 
particles with arbitrary values of m/T. Most of this is simply expanding the 
relevant integrals for things like number density  

 

 



 
as a function of what he calls and (for baryons, which are 
conserved and therefore have an associated chemical potential) . 
For our purposes, it's sufficient to just remind people of the basic 
blackbody results obtained in the limit:  

 

.  

 
This is the number density of a massless boson gas as a function of 
temperature; the function is the Riemann zeta function 

.  Taking g=3, we obtain the result Landau quotes between 
his Eqs. 2.4 and 2.5:  

 
.  

 
In the end of this section, Landau derives a complicated expression 
relating the number of produced particles to the entropy. It's complicated 
only because he is solving the general case, in this massless limit for 
bosons it's straightforward. Let's first derive the total energy U of the gas:  

 

.  



 
Now use the general result along with the special 
result for a massless gas, and by assumption to get  

 

 

 
Landau tabulates the reciprical of this value in his Table 5; I'm a little 
puzzled why he lists the asymptotic value as 0.25 rather than the 1/3.6 = 
0.28; I think it's because even for he is still allowing for nucleon-
antinucleon formation in his Eq. 2.20, and that results in a small correction. 

The Total Number of Particles  

The basic results of the previous section can be used to relate the total 
energy in the system to the number of produced particles. The fundamental 
assumption is that the expansion is isentropic ("proved" in next 
section).  Let's write our relations for number density n, entropy density s 
and energy density as  

 
.  

 
Putting aside all the things that people later concluded were "wrong" about 
the Landau model (related to inability to put all the low-x partons into an 
extremely Lorentz-compressed volume),  we would have for the initial 
(known) total energy , which then tells us immediately both the initial and 
final entropy, and thus the final number of particles:  



 

 

 
Writing , where A is the atomic mass, and assuming that the 
initial volume , this becomes  

 

.  

 
(Here is the nucleon mass and is the "effective volume" of a 
nucleon.) Using the results from the previous section to substitute 

and , and writing , this becomes  

 

 

 
Putting in the values for full energy RHIC Au+Au collisions, I get  

 

 

 
which is certainly the right order-of-magnitude (note this includes , 
since I used g=3 above), and actually probably much better than an order-



of-magnitude. 
 
We can check for (eventual) self-consistency by integrating the BRAHMS 
results that appear in the Introduction. These are gaussian in shape, with an 
intercept of about 300 pions per charge state, which (putting in a width of 
about 2.4) gives  

 

 

 
This of course would give 5400 pions, as compared to the 6300 estimated 
above. However, the entropy counting is probably smarter than we are, 
since it we know the pions are only about 80(?)% of the total multiplicity, 
so that the 5400 pions implies a total multiplicity ~ 6750, so the "error" is 
within my own uncertainty on the 80% I am using... Amazing.  
 
WARNING: This "agreement" should be taken with a very large grain of 
salt. Most practitioners today would say A) you need to take into account 
the inelasticity (~0.5) observed in  p+p collisions, i.e., you can't take credit 
for the full energy being deposited in the initial volume and B) you also 
can't take credit for the full Lorentz contraction, since the uncertainty 
relation prohibits that degree of localization for partons below a given x 
value.  I fully agree with these concerns, while at the same time noting 
they imply a next round of questions: a) Does the inelasticity in p+p matter 
if the system "immediately" becomes so dense that the forward-going 
energy in one collision is "contained" in subsequent ones and b) what 
fraction of the initial energy is carried by the low-x partons that extend 
"outside" the contracted volume? 

Energy and Angle Distribution of 
Particles  

That section title is of course Landau's; here I am mostly interested in 
understanding how the hydrodynamic equations of motion are applied and 
solved. That begins from  



 

,  

 
and writing the stress-energy tensor for a perfect fluid in terms of the 
energy density ε, the pressure P and the fluid four-velocity as  

 
.  

 
Note: I am using the Bjorken and Drell metric convention (1, -1, -1, -1), as 
appropriate for particle physics, and will try to be not too sloppy about 
upper and lower indices. This results in various minus signs differences, 
e.g., compare above to Landau's Eq. 4.2 
 
Before proceeding with substituting into the equation of motion, it's 
useful to work out some thermodynamic relations related to the 
combination "heat function per unit volume". One more 
time, recall the general thernodynamic relations  

 

 

 
The "heat function" or enthalpy is defined by chemists as , 
and Landau chooses to call the volume density of . In the case 
where the number of particles is not conserved, we have , and life 
simplifies. In particular, we immediately have . Not so obvious, but true, is 
the all-important differential , which follows in a 
straightforward way from d(E/V) and the above relations:  

 

 



 
A little later, we will also need the following:  

 
.  

 
Now we're prepared to solve the hydrodynamic equations of motion for a 
perfect fluid. The basic approach is to project the four-vector of the 
equation of motion (Eq. 14) along and perpendicular to the four-velocity:  

 

.  

 
First project along the fluid four-velocity by contracting with and using 

 

 

.  

 
The quantity that appears in the second term is in fact zero (yes, I am 
being slightly sloppy about lower and upper indices, but it's an instructive 
exercise to the student to verify why this works):  

 

,  

 
so the equation becomes  



 

.  

 
Substituting in our thermodynamic relations, this beomes  

 

,  

 
that is, the motion preserves the entropy, i.e., it's adiabatic (!).  
 
 
We get the "other" equation of motion by projecting out the direction 
orthogonal to the four-velocity:  

 

.  

 
(Note that this projection works just as for Cartesian vectors, i.e., for any 
vector we find the part of it orthogonal to by constructing 

. All that's different here is that our vector A is produced by 
taking the divergence of the stress-energy tensor.)   
 
Substituting the perfect fluid tensor, we obtain  

 

 



 
(after canceling many terms and again using ).  
 
At this point, it's worth noting that a) this is just the Euler equation for 
fluid motion, and b) the Euler equation is just F=m a. The " m a " term 
should be obvious above; the other two terms just project out the relevant 
component of the force along the fluid motion. See for example the 
discussion in Gravitation, Misner, Thorne and Wheeler, p. 562ff.) 
 
Using the thermodynamic relations , the Euler 
equation (Eq. 25) can be recast as  

 

.  
 
Calculation details:  

 

 

The assertion is then that this equation takes on a simple potential form in 
1+1 dimensions. I am fairly certain this does not follow directly from the 
equation, one must also use the isentropic condition? and some more 
thermodynamic relations?):  



 

 
 
A note on signs: once I start labeling space and u components 
with  names "t and z" rather than indices (0,1,2,3)  I am no longer 
regarding them as objects upon which we raise and lower indices- 

they're just names for the functions defined in 
the first equation line above.  

 
Landau next effects two transformations on the above "potential" . Let's 
take these one at a time: First, plan on changing to a new function 

via a Legendre transformation:  

 

 

 
Note that it is allowed to write something like "du" in the 1+1 case, i.e., 
the and components are not independent. Make this explicit by 
parameterizing the four-velocity in terms of rapidity: 
 

 
 
then effect the Legendre transformation:  



 

 

 
Here I've kept the fairly crummy notation of using α for rapidity, since 
calling it the more standard "y" would probably just confuse things and 
would definitely increase the separation from Landau's notation.  
 
. To be continued(?)... 

Viscosity done simply  

Here I provide some undergraduate material on viscosity. Almost all of 
this is on the "first coefficient", i.e., the one associated with shear 
viscosity. Other sources of dissipation are bulk ("second") viscosity and 
thermal conductivity. 
 
The coefficient of viscosity  is defined as  

 

 

 
which gives the force per unit area across two parallel surfaces when the 
fluid moving parallelt ot the surfaces has a velocity gradient   
between the two surfaces. This is a "drag" or dissipative force, and leads 
immediately to the concept of the Reynolds number as the dimensionless 
ratio of inertial to drag forces:  



 

,  

 
the last form being the conventional definition of the Reynolds number. 
 
At the microscopic level, we understand viscosity as being due to the 
transport of momentum "across" some boundary due to thermal motion, so 
by dimensional considerations we would expect  

 
 

 
where λ is the mean free path. This immediately leads to the result that 
viscosity does not depend on the density(!):  

 

 

 
and to the result Landau noted, that is, in the ideal hydro limit of large 
cross sections the viscosity goes to zero.  
 
Much of the discussion of viscosity at RHIC has been in terms of the 
dimensionless ratio of viscosity to the entropy density s. Shuryak has 
asserted the flow data from RHIC suggest .  What does this imply 
for the corresponding Reynolds number for the flow?  

 

 



 
Here I've used the standard thermo results 

for µ=0. Writing is an 
ideal gas assumption; it's not at all clear to me how accurate this is for 
QGP, but I doubt it changes the qualitative result.  
 
Curiously, these back of the envelope calculations put the Reynolds right 
in the transition regime, where vortices appear (say around R=20), up to 
where noise begins to appear (R=40), i.e., the flow pattern is no longer 
steady-state. (Feynman has a beautiful discussion of this in Volume 2 of 
his lectures.) 
 
What would be the corresponding regime for water? The viscosity of water 
is about Pa-S at room temperature. Let's assume we collide two 1mm 
drops of water. A collision velocity corresponding to a Reynolds number 
of 10 is then given by  

 

 

 
This is a tricky analogy- we would not expect any great dissipative splat at 
these low velocities, but we must recall that the QGP flow apparently has 
the same smooth laminar structure even when compressed to the huge 
initial densities when elliptic flow is generated! 
 
This is as good a place as any to calculate the ratio for water. At STP, 1 
mole of water has an entropy of about 70 J/K. This then gives an entropy 
density of  

 

,  

http://www.engineeringtoolbox.com/21_575.html


 
compared to a viscosity (which I convert to volume density using Planck's 
constant) of  

 

 

 
leading to a ratio  

 

.  

 
So, yes, I agree that the plasma value of ~0.1 for this ratio is much more 
"perfect" than water. 
 
Somewhere people began describing the plasma as "sticky", perhaps as an 
attempt to explain its quenching properties. However, it's a very bad 
description of its flow properties. Our Reynolds number of 10 above 
corresponds to moving a 1 cm diameter stick through water at 1 mm/sec. I 
think most of us would agree that the stick would move "smoothly" 
through the water withour any sense of 'stickiness". By contrast, since the 
room temperature viscosity of honey is about times larger than that of 
water, motion at the same Reynolds number in honey would require 
moving that stick at 10 m/sec (that's sticky!).  Perhaps even more useful 
would be to think of moving the stick at the same velocity (1 mm/sec) as 
in water. This corresponds to Purcell's famous Life at Low Reynolds Number; 
of course you know intuitively that at this low Reynolds number the honey 
would indeed stick to the rod as you removed it from the fluid at 1 mm/sec. 

 
Viscosity Done Not Simply  

Perhaps the leading "not simply" candidate would be "Shear Viscosity in the 
O(N) Model", which after a nice introduction, becomes very opaque. But it 

http://www.airborne.co.nz/manufacturing.html
http://brodylab.eng.uci.edu/~jpbrody/reynolds/lowpurcell.html
http://arxiv.org/abs/hep-ph/0402192
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has a useful set of references, especially the rapidly-becoming-famous 
Policastro, Son, Starinets calculation in AdS. (As an aside, this 2001 paper 
notes that "the quark-gluon plasma one hopes to create in heavy-ion 
experiments has relatively low temperature at which the perturbation 
theory works very poorly".)  
 
This later reference is readable because they make an effort to say in 
words the utterly bizarre connection they establish between viscosity on 
the gauge theory side and graviton absorption by a stack of N D3-branes. 
Here "N" is the same as that in the large-N limit, this because one wants to 
use the 't Hooft trick of letting N become large and working at "constant" 

.  The end result of this can be summarized as 

 

 
Is is the first limit that leads to the famous that has the heavy 
ion world so excited. (The other limit is what you would get for a weakly 
coupled plasma, and I'm sure you can find it used in the literature...) They 
conclude "There is apparently no separation of scales in the strong 
coupling regime that would make a kinetic description possible: 1/T is the 
only length/time scale." I find it fascinating that you can find a discussion 
of precisely this connundrum by Kajantie in the proceedings of the second 
(1983) Quark Matter conference. 
 
The leading reference for viscosity applied "directly" to observed RHIC 
data is Teaney's paper. However, as far as I can tell this is cast entirely as 
1st order corrections to a Bjorken-scaling scenario (in fact, much of it is 
done as corrections to a blast-wave model, without reference to the EOS 
and/or underlying equations of motion). Very useful to get the lay of the 
land, but hard to extract quantitative limits on from this. For instance, his 
result on the dependence of is often cited as setting the limit on 
viscosity at RHIC: 

http://arxiv.org/abs/hep-th/0104066
http://arxiv.org/abs/nucl-th/0301099


 
Here is the sound attenuation length and is some measure of the 
system size, so you can think of it as the reciprocal of the Reynolds 
number. The problem I see here is that the zero-viscosity (red) curve 
doesn't really describe the data all that well (wrong curvature), while 
turning on a little viscosity fixes the curvature, but misses the data... so 
what's the systematic error on these extractions??  
 
Teaney is quite honest about inability to get a good global description of 
HBT data. Note also the reference to general theory of viscosity in 
relativistic fluids to S. Weinberg; you can also find a discussion of this in 
his Gravitation and Cosmology book.  

Viscosity, Scott Pratt, and the Westinghouse  

 
For obscure reasons, I posted an extensive discussion of viscosity to phenix-
run-l some time ago; I reproduce it here for convenience: 
 
Dear Colleagues: 
 
This message concerns the relation between Scott Pratt's talk on QGP 
signatures  
and problems with the Westinghouse motor-generator set. It is for 
educational 
purposes only; no need to read past here unless you're interested in this 
odd connection. 
 
This follows a lunchtime discussion among several PHENIX people following 

https://www.phenix.bnl.gov/phenix/WWW/p/lists/phenix-global-l/msg00892.html
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Scott's talk at the Users' Meeting, where he repeatedly used the terms 
"viscosity" and "long mean free path" interchangeably. I think Scott's 
point 
was that ideal hydro describes much of the flow data, but it has no 
viscosity, 
but viscosity required long mfp's, but ... Hence the confusion. 
 
Each of us involved in the lunchtime discussion (Soren Sorensen, Richard 
Seto, 
Glenn Young, myself) had some piece of the puzzle, but not the whole story.  
(Perhaps the most interesting part of the discussion centered on Jason 
Newby's 
realization that these senior people did not exactly have a complete 
knowledge 
of hydrodynamics.) 
 
Yes, the textbook formula for viscosity does has an explicit mfp in it.  
The coefficient of viscosity $\eta$ is defined in terms of the shear stress  
(force per unit area) exerted on a slab by a velocity gradient in the 
fluid: 
 
$ F_x / A = \eta dv_x / dz $ 
 
Simple dimensional analysis suggests that (for an  _ideal_  gas) that 
 
$ \eta \sim    \rho v_{ave} L $ ,  
 
that is, the product of the mass density, the average velocity, and the mfp 
$L$.  
This is also physically plausible, since it's basically the ability to 
transport 
momentum density $\rho v_{ave}$ over a distance $L$.  
 
At the same time, it's puzzling. Doesn't hydro result in the limit of 
_short_ mfp's? 
Does this mean hydro is incompatible with viscosity?? Of course not. 
(Although many 
of the hydro results in our field _are_ calculated ignoring viscosity, a 
limit 
Feynman refers to in not too favorable terms as "dry water" -- see lectures 
40 and 
41 in Volume II.) The "puzzle" is easily resolved when one expresses the 
mfp in 
terms of the cross-section $L = 1 /( n \sigma)$ , where $n$ is the number 
density, 
which makes it clear that the viscosity is *density independent*, i.e.,  
 
$ \eta \sim   M v_{ave} / sigma $. 
 
So there is *no* direct relation between "long" mfp's and viscosity, even 
in the  
ideal gas limit.  
 
All of this is very well known and readily obtainable on the web, e.g., see  
 
  http://www.chem.hope.edu/~polik/Chem345-
1997/gasviscosity/GasViscosity.html 
 
for a nice discussion (but note usage of "Poiseville" where I think one 
wants "Poiseuille") 
 
and 
 



http://www.science.uwaterloo.ca/physics/p13news/maxall.html 
 
for the historical background (Maxwell was not only the first to derive the 
fact 
that viscosity for gases is essentially pressure independent, but also 
conducted 
experiments, together with Mrs. Maxwell, to verify the temperature 
dependence 
implicit in the $v_{ave}$.) 
 
Now clearly ideal gases don't behave as the viscous fluids such as honey or 
oil 
we are all familiar with. There, the viscosity  *decreases* with 
temperature, rather 
than increasing as suggested by the result for ideal gases. Not 
surprisingly, this is 
related to the fact that oil is not an ideal gas, or even an "ideal fluid".  
In particular, there is an additional source of viscosity that results 
from attractive forces between molecules, which has a strong temperature 
dependence, 
i.e., higher temperatures prevent bonding and reduce internal "friction" in 
the fluid. 
 
This last point is directly related (I am  _guessing_ ) to the inability to 
turn on 
the motor-generator set under high temperatures, as noted in Vicki Greene's 
shift 
change message  
 
http://www.phenix.bnl.gov/phenix/WWW/p/lists/phenix-run-l/msg02932.html 
 
from 10-Aug-01: 
 
> 
> The problem with the Westinghouse yesterday was that the oil, which  
> normally circulates through the cooling system, became warm during the  
> shutdown.  This caused the oil pressure to drop below the point where the  
> W. would turn on.  Some fixes were discussed, such as welding cooling 
fins  
> onto the oil tank or replacing the 200 gallons of oil with all-weather,  
> synthetic oil.   Where is the nearest Jiffy Lube? 
> 
 
A standard calculation for laminar flow of a viscous fluid (oil in this 
case)  
in a pipe of diameter $R$ shows that the pressure $\delta P$ required to 
support  
a given flow rate varies as  
 
$ \delta P \sim \eta  S / R^4 $ 
 
My guess is that the M-G set uses this as a way of measuring the oil 
pressure.  
But for sufficiently hot oil, $\eta$ is reduced, and the oil pressure fails 
to 
reach the minimum value required to satisfy the interlock.  
 
Best regards, 
 
Bill 

 



Stress-Energy Tensor Basics  

To be completed...  
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To Do List: 
1. References to modern viscosity papers (update Teaney wrt jets) 
2. State of the art hydro, Hirano QM talk?  
3. Stress-energy tensor basics 
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